Integrable Discretisations for a Class of Nonlinear Schrödinger Equations on Grassmann Algebras
نویسندگان
چکیده
Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.
منابع مشابه
Loop Algebras and Bi-integrable Couplings∗
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations. The variational identities under non-degenerate, symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings. A special case of the s...
متن کاملOn the quantum KP hierarchy and its relation to the non-linear Schrödinger equation
We establish a relation between the classical non-linear Schrödinger equation and the KP hierarchy, and we extend this relation to the quantum case by defining a quantum KP hierarchy. We also present evidence that an integrable hierarchy of equations is obtained by quantizing the first Hamiltonian structure of the KdV equation. The connection between infinite-dimensional algebras and integrable...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملA Grassmann integral equation
The present study introduces and investigates a new type of equation which is called Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann (Berezin) integrations and which is to be obeyed by an unknown function over a (finite-dimensional) Grassmann algebra Gm (i.e., a sought after element of t...
متن کاملIntegrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...
متن کامل